更多>>人气最旺专家

刘新璐

领域:有问必答网

介绍:试样经QUV加速老化己发生破损,基本失效。...

马建民

领域:中国广播网

介绍:五年,区人大常委会以开展群众路线教育实践活动和“三严三实”、“两学一做”学习教育为主线,深入学习贯彻党的十八大和十八届三中、四中、五中、六中全会和习近平总书记系列重要讲话精神,认真行使宪法和法律赋予的职权,充分发挥地方国家权力机关作用,为推进我区经济社会发展和法治禹会建设做出了积极贡献。利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少

利来国际w66客服
本站新公告利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少
7af | 2019-01-24 | 阅读(573) | 评论(734)
福建省10个代表团的200多名选手们努力克服生理障碍,全力赴赛,充分展示了精湛的职业技能、不屈的意志和顽强进取、乐观向上的良好精神风貌。【阅读全文】
利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少
v5i | 2019-01-24 | 阅读(200) | 评论(486)
下面,先学习**党委文件《关于召开*****民主生活会的通知》(**[201*]号文)(读文件)按照民主生活会的程序,我们事先于**月*日通过座谈广泛征求了党内外群众的意见,现把情况通报一下。【阅读全文】
5fl | 2019-01-24 | 阅读(717) | 评论(976)
光电特征标识技术是一种新型利用光电特征对目标进行识别、定位的现代识别技术。【阅读全文】
q6f | 2019-01-24 | 阅读(255) | 评论(69)
此外,在生产经验上,林业系统所属的福建顺昌纸板厂是我国第一家全部采用国产设备、利用混合材制化机浆生产强韧箱纸板的生产厂,取得了良好的社会和经济效益。【阅读全文】
ob4 | 2019-01-24 | 阅读(948) | 评论(997)
四是形式主义表现。【阅读全文】
sbc | 2019-01-23 | 阅读(176) | 评论(879)
第一种定义HSS)分类法是按其冶金学名称定义分类,可分为低强度钢,传统高强钢(Conventional和先进高强钢(AHSS)。【阅读全文】
vh5 | 2019-01-23 | 阅读(207) | 评论(978)
总结是应用写作的一种,是对已经做过的工作进行理性的思考。【阅读全文】
lxk | 2019-01-23 | 阅读(694) | 评论(696)
由此可见,如采用轻量化材料,将对汽车节能具有重要的意义。【阅读全文】
利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少,利来国际是多少
5ez | 2019-01-23 | 阅读(999) | 评论(539)
(2)按照白蚁及消杀司提供的定期服务表,对其的工作情况监督,确保消杀到位,对周边的白蚁检查到位,杜绝有偷工减料及消极待工现象。【阅读全文】
i3d | 2019-01-22 | 阅读(808) | 评论(768)
请问:张三应交纳的个人所得税是多少?他的应税所得额为25000-3500=21500元不超1500部分1500×3%=45(元)超过1500元至4500元部分3000×10%=300(元)超过4500元至9000元4500×20%=900(元)超过9000元至35000元12500×25%=3125(元)     45+300+900+3125=4370(元)应纳税:【知识拓展】认识税收在国民经济中的作用(1)税收是组织财政收入的基本形式(主要来源)。【阅读全文】
xpj | 2019-01-22 | 阅读(69) | 评论(332)
RNA的种类、结构和功能考点一1、基本单位:核糖核苷酸2、结构:一般是单链,而且比DNA短,因此能够通过核孔,从细胞核转移到细胞质中。【阅读全文】
c4w | 2019-01-22 | 阅读(451) | 评论(101)
①有的图中把岩浆岩分成了两类:侵入型岩浆岩和喷出型岩浆岩,而有的图中只表示为岩浆岩。【阅读全文】
it2 | 2019-01-22 | 阅读(775) | 评论(482)
1995年至1998年在广州市xx制衣有限司任设计总监,该司主要经营自己运动品牌,批发到全国各地,有自已形象店,旗舰店。【阅读全文】
xjz | 2019-01-21 | 阅读(567) | 评论(19)
你试试问他关于销售的专业知识,他答不的。【阅读全文】
rbu | 2019-01-21 | 阅读(626) | 评论(285)
 二元一次不等式(组)与平面区域课后篇巩固探究                A组1.若不等式Ax+By+50表示的平面区域不包括点(2,4),且k=A+2B,则k的取值范围是(  )≥-≤-解析由于不等式Ax+By+50表示的平面区域不包括点(2,4),所以2A+4B+5≥0,于是A+2B≥-,即k≥答案A2.图中阴影部分表示的区域对应的二元一次不等式组为(  )++y-解析取原点O(0,0)检验,它满足x+y-1≤0,故异侧点应满足x+y-1≥0,排除B,D.点O的坐标满足x-2y+2≥0,排除C.故选A.答案A3.若点P14,a在0≤,,3解析由题意,知12≤a≤1答案A4.不等式(x+2y-2)(x-y+1)≥0表示的平面区域是(  )解析不等式(x+2y-2)(x-y+1)≥0等价于x+2y答案A5.在平面直角坐标系中,若不等式组x+y-1≥0,x-A.-解析图中的阴影部分即为满足x-1≤0与x+y-1≥0的平面区域,而直线ax-y+1=0恒过点(0,1),故可看作直线绕点(0,1)旋转.当a=-5时,满足题意的平面区域不是一个封闭区域;当a=1时,满足题意的平面区域的面积为1;当a=2时,满足题意的平面区域的面积为;当a=3时,满足题意的平面区域的面积为2.故选D.答案D6.不等式组2x-y解析该不等式组表示的平面区域是一个直角三角形及其内部,其面积等于×3×6=9.答案97.若点(1,2)与点(-3,4)在直线x+y+a=0的两侧,则实数a的取值范围是     .解析由题意,得(1+2+a)(-3+4+a)0,解得-3a-1.故实数a的取值范围是(-3,-1).答案(-3,-1)8.若不等式组x-y≥0,2解析不等式组x-y≥0,2x+y≤2,y≥0表示的平面区域如图中的阴影部分所示,画出直线x+y=0,并将其向右上方平行移动,直至直线过点(1,0),均满足题意,此时0a≤1;将其再向右上方平移,原不等式组所表示的平面区域就不能构成三角形了,直至直线经过点A2答案0a≤1或a≥9.画出以A(3,-1),B(-1,1),C(1,3)为顶点的△ABC的区域(包括边界),并写出该区域所表示的二元一次不等式组.解如图所示,直线AB,BC,CA所围成的区域就是所要画的△ABC的区域,其中直线AB,BC,CA的方程分别为x+2y-1=0,x-y+2=0,2x+y-5=0.在△ABC内取一点P(1,1),将其代入x+2y-1,得1+2×1-1=2代入x-y+2,得1-1+2代入2x+y-5,得2×1+1-50.又所画区域包括边界,所以该区域所表示的二元一次不等式组为10.导学号04994072在平面直角坐标系中,求不等式组y≥x-解原不等式组可化为y上述不等式组表示的平面区域如图阴影部分所示,则△ABC的面积即为所求.易知点B的坐标为12,-12,点C的坐标为(所以S△ABC=S△ADC+S△ADB=×2×1+×2×12B组1.不等式(x-2y+1)(x+y-3)≤0在直角坐标平面内表示的区域(阴影部分)是下列图形中的(  )解析∵(x-2y+1)(x+y-3)≤0,∴x-2答案C2.二元一次不等式组解析不等式组表示的平面区域如图中阴影部分所示,易知图中阴影部分有4个整点,分别是(0,0),(0,-1),(1,-1),(2,-2),故选B.答案B3.若不等式组x-y+5≥0,yA.(-∞,5)B.[7,+∞)C.[5,7)D.(-∞,5)∪[7,+∞)解析作出不等式组x-y+5≥0,0≤x答案A4.如图,四条直线x+y-2=0,x-y-1=0,x+2y+2=0,3x-y+3=0围成一个四边形,则这个四边形的内部区域(不包括边界)可用不等式组       表示.解析点(0,0)在该平面区域内,点(0,0)和平面区域在直线x+y-2=0的同侧,把(0,0)代入x+y-2,得0+0-20,所以对应的不等式为x+y-20.同理可得其他三个相应的不等式为x+2y+20,3x-y+30,x-y-10.故所求不等式组为3答案35.若直线y=kx+1将不等式组x-y+2≥0,x解析不等式组表示的平面区域如图中阴影部分所示,△ABC是等腰直角三角形,且BC⊥x轴,A(-1,1).直线y=kx+1经过点(0,1),要使直线将△ABC的面积等分,则k=0.答案06.画出不等式|x|+|y|≤1【阅读全文】
共5页

友情链接,当前时间:2019-01-24

www.w66.com 利来国际娱乐 利来国际w66最新 利来国际娱乐老牌 利来国际w66利来国际w66
利来国际AG旗舰店 利来国际娱乐 利来国际娱乐w66 利来天用户 利来国际在线客服
利来娱乐账户 w66.com利来国际 利来娱乐网 利来网上娱乐 利来电游
利来娱乐网址 www.v66利来国际 w66利来国际 利来国际官网 利来国际w66备用
多伦县| 洛宁县| 桐城市| 阳新县| 阳曲县| 揭东县| 大英县| 安平县| 洪洞县| 武邑县| 贡嘎县| 兴仁县| 四会市| 北安市| 略阳县| 宁明县| 曲阳县| 桐城市| 农安县| 肥城市| 佛山市| 黎平县| 玉环县| 彭山县| 大庆市| 寻甸| 安国市| 隆尧县| 汉源县| 河西区| 津市市| 化隆| 沧州市| 绥滨县| 肇州县| 彩票| 临潭县| 江川县| 通许县| 安西县| 乐至县| http://m.20060149.cn http://m.37583094.cn http://m.85120715.cn http://m.41315728.cn http://m.30906886.cn http://m.99476225.cn